Cerebral ischemia elicits aberration in myocardium contractile function and intracellular calcium handling.
نویسندگان
چکیده
The mechanisms of myocardial dysfunction and calcium handling disturbance underlying cerebral ischemia remain obscure. Here we for the first time report that acute cerebral ischemia significantly increased left ventricular end diastolic pressure (LVEDP), but decreased +dP/dt, -dP/dt, and left ventricular systolic pressure (LVSP). Significant increase in either the resting or KCl-induced [Ca2+](i)in ventricular myocytes was also detected by scanning confocal microscopy at 2 and 24 hours after cerebral ischemia. Verapamil as a blocker of I(Ca,L), ryanodine as a specific inhibitor of RyR, thapsigargin as a highly specific inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) and SEA0400 as a selective NCX inhibitor changed the area under the curve of averaged ratio of fluorescence (FI/F(0)I) induced by KCl. Cardiac expression of Ca(v)1.2 was significantly up-regulated at 2 and 24 hours after cerebral ischemia, whereas cardiac expression of SERCA2a and Na(+)-Ca(2+) exchanger (NCX) was significantly down-regulated at the same time period after cerebral ischemia. Cardiac expression of phospholamban (PLB) was significantly elevated at 2 hours after cerebral ischemia but was restored to about normal level at 24 hours after injury. These data suggest that acute cerebral ischemia may specifically disturb cardiac function and calcium homeostasis, which are related to increase of Ca(v)1.2 and decrease of through up-regulating Ca(v)1.2 and PLB, down-regulating SERCA2a and NCX, subsequently leading to Ca2+ overload by the enhancement of Ca2+ influx and inhibition of intracellular Ca2+ extrusion and cerebral ischemia-induced myocardial dysfunction.
منابع مشابه
Post-ischemic PKC inhibition impairs myocardial calcium handling and increases contractile protein calcium sensitivity.
OBJECTIVE Protein kinase C (PKC) activation impairs contractility in the normal heart but is protective during myocardial ischemia. We hypothesized that PKC remains activated post-ischemia and modulates myocardial excitation-contraction coupling during early reperfusion. METHODS Langendorff-perfused rabbit hearts where subjected to 25 min unmodified ischemia and 30 min reperfusion. Total PKC ...
متن کاملRole of intracellular calcium handling in force-interval relationships of human ventricular myocardium.
Experiments were performed in human working myocardium to investigate the relationship of intracellular calcium handling and availability to alterations in the strength of contraction produced by changes in stimulation rate and pattern. Both control and myopathic muscles exhibited potentiation of peak isometric force during the postextrasystolic contraction which was associated with an increase...
متن کاملInhibition of tumor necrosis factor-alpha improves postischemic recovery of hypertrophied hearts.
BACKGROUND Tumor necrosis factor (TNF)-alpha has been implicated in the pathogenesis of heart failure and ischemia-reperfusion injury. Effects of TNF-alpha are initiated by membrane receptors coupled to sphingomyelinase signaling and include altered metabolism and calcium cycling, contractile dysfunction, and cell death. We postulate that pressure-overload hypertrophy results in increased myoca...
متن کاملInhibition of Tumor Necrosis Factor-a Improves Postischemic Recovery of Hypertrophied Hearts
Background—Tumor necrosis factor (TNF)-a has been implicated in the pathogenesis of heart failure and ischemiareperfusion injury. Effects of TNF-a are initiated by membrane receptors coupled to sphingomyelinase signaling and include altered metabolism and calcium cycling, contractile dysfunction, and cell death. We postulate that pressureoverload hypertrophy results in increased myocardial TNF-...
متن کاملAltered Calcium Handling and Ventricular Arrhythmias in Acute Ischemia
Acute ischemia results in deadly cardiac arrhythmias that are a major contributor to sudden cardiac death (SCD). The electrophysiological changes involved have been extensively studied, yet the mechanisms of ventricular arrhythmias during acute ischemia remain unclear. What is known is that during acute ischemia both focal (ectopic excitation) and nonfocal (reentry) arrhythmias occur, due to an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2010